Cel: +52 (55) 3040-5403 Correo: mariana.velazquez@recluit.com
post-tittle

¿Cómo se mueve el Big Data en las organizaciones?

Por: Reclu IT

10 de noviembre de 2016

Una de las tecnologías que se consolidó en este año fue el Big Data debido a una mayor confianza por parte de las empresas y nuevas formas de establecer estrategias basadas en esta solución, algo de lo que nos muestran los expertos de Oracle.

Aunque las estadísticas complejas aún están limitadas a los datos científicos, la toma de decisiones basada en datos no debería estarlo. Las herramientas más simples de descubrimiento de grandes datos, permitieron a los analistas de negocios comprar conjuntos de datos en clusters Hadoop empresariales, darles forma en nuevas combinaciones de Mashup, e incluso analizarlos con técnicas de aprendizaje automáticas exploratorias.

Con más hipótesis para investigar, los científicos de datos profesionales tuvieron una creciente demanda de sus habilidades por las empresas establecidas. Por ejemplo, los bancos, las aseguradoras y las empresas de calificación crediticia se volverán a los algoritmos para fijar el precio del riesgo y evitar el fraude con mayor eficacia. Pero muchas de esas decisiones son difíciles de migrar de juicios inteligentes a reglas claras.

Se espera una proliferación de experiencias de riesgo de falta de pago, suscripción de políticas y detección de fraudes ya que las empresas tratan de identificar puntos de acceso para tener la ventaja algorítmica más rápido que la competencia.

Los primeros en adoptar big data no tenían más opción que construir sus propios clusters y ambientes de big data. Pero construir, administrar y mantener estos sistemas únicos construidos sobre Hadoop, Spark y otras tecnologías emergentes es costoso y requiere mucho tiempo. De hecho, el tiempo promedio de construcción es de seis meses. ¿Quién puede esperar tanto tiempo? En 2016, las tecnologías maduraron y se volvieron  más dominantes gracias a servicios en la nube y dispositivos con automatización y normalización pre configuradas.

Las empresas no sólo captan una mayor variedad de datos, los usan en una mayor variedad de algoritmos, análisis y aplicaciones. Pero los desarrolladores y analistas no deberían tener que saber qué datos están en un lugar o quedarse bloqueados con sólo los métodos de acceso que ese repositorio soporta. Se busca un cambio de enfoque usando una única tecnología, como NoSQL, Hadoop, relacional, espacial o gráfica, para aumentar la confianza en la virtualización de datos. Los usuarios y las aplicaciones se conectan a los datos virtualizados, a través de lenguajes SQL, REST y de programación.

Las olas iniciales de  adopción de big data se concentraron en el procesamiento de datos codificados a mano. Las nuevas herramientas de gestión serán desacoplar y aislar las tecnologías de big data a partir de las necesidades de procesamiento de datos de mayor nivel. También veremos la aparición de la programación de flujo de datos que aprovecha el paralelismo extremo, proporciona una simple reutilización de los operadores funcionales y da soporte conectable para funciones de aprendizaje de estadística y de la máquina.

Se consolidaron las tecnologías de Inteligencia Artificial (AI) como Aprendizaje Automático [Machine Learning] (ML), Procesamiento del Lenguaje Natural [Natural Language Processing (PLN)] y Gráficos de Propiedad  [Property Graphs (PG)] a los desafíos de procesamiento de datos comunes. Mientras ML, PLN y PG ya han sido accesibles como bibliotecas API de big data, el nuevo cambio incluirá amplias aplicaciones de estas tecnologías en herramientas de TI que soportan aplicaciones, análisis en tiempo real y datos científicos.

Los servicios de big data en la nube son la magia detrás de los bastidores del Internet de las cosas (IoT). La ampliación de los servicios en la nube no sólo capta los datos de los sensores, sino también los alimenta en análisis de big data y algoritmos para hacer uso de ellos.

Los servicios de alta seguridad en la nube del IoT también ayudarán a los fabricantes a crear nuevos productos que tengan acción de forma segura sobre los datos analizados sin intervención humana.

Saber de dónde provienen los datos – no sólo desde qué sensor o sistema, sino desde qué  nación, hará que sea más fácil para los gobiernos hacer cumplir las políticas nacionales de datos. Las corporaciones multinacionales en movimiento hacia la nube estarán atrapadas entre intereses en conflicto.

Cada vez más, las compañías globales se moverán a las implementaciones de nube híbridas con máquinas en los centros de datos regionales que actúan como un centro local de un servicio en la nube más grande, lo que honra tanto la conducción por la reducción de costos y el cumplimiento normativo.

Los nuevos sistemas de clasificación de seguridad equilibran la seguridad con el acceso. El aumento de la conciencia del consumidor de las formas cómo los datos se pueden recolectar, compartir, almacenar, y robar, amplificará solicitudes de protecciones reglamentarias de información personal.

La amenaza constante de los hackers informáticos cada vez más sofisticados incitará a las empresas tanto a reforzar la seguridad como a auditar el acceso y el uso de los datos.

Deja tu comentario

Tu dirección de correo electrónico no será publicada.

Campos obligatorios(*)
post-tittle

¿Cómo se mueve el Big Data en las organizaciones?

Por: Reclu IT

10 de noviembre de 2016

Una de las tecnologías que se consolidó en este año fue el Big Data debido a una mayor confianza por parte de las empresas y nuevas formas de establecer estrategias basadas en esta solución, algo de lo que nos muestran los expertos de Oracle.

Aunque las estadísticas complejas aún están limitadas a los datos científicos, la toma de decisiones basada en datos no debería estarlo. Las herramientas más simples de descubrimiento de grandes datos, permitieron a los analistas de negocios comprar conjuntos de datos en clusters Hadoop empresariales, darles forma en nuevas combinaciones de Mashup, e incluso analizarlos con técnicas de aprendizaje automáticas exploratorias.

Con más hipótesis para investigar, los científicos de datos profesionales tuvieron una creciente demanda de sus habilidades por las empresas establecidas. Por ejemplo, los bancos, las aseguradoras y las empresas de calificación crediticia se volverán a los algoritmos para fijar el precio del riesgo y evitar el fraude con mayor eficacia. Pero muchas de esas decisiones son difíciles de migrar de juicios inteligentes a reglas claras.

Se espera una proliferación de experiencias de riesgo de falta de pago, suscripción de políticas y detección de fraudes ya que las empresas tratan de identificar puntos de acceso para tener la ventaja algorítmica más rápido que la competencia.

Los primeros en adoptar big data no tenían más opción que construir sus propios clusters y ambientes de big data. Pero construir, administrar y mantener estos sistemas únicos construidos sobre Hadoop, Spark y otras tecnologías emergentes es costoso y requiere mucho tiempo. De hecho, el tiempo promedio de construcción es de seis meses. ¿Quién puede esperar tanto tiempo? En 2016, las tecnologías maduraron y se volvieron  más dominantes gracias a servicios en la nube y dispositivos con automatización y normalización pre configuradas.

Las empresas no sólo captan una mayor variedad de datos, los usan en una mayor variedad de algoritmos, análisis y aplicaciones. Pero los desarrolladores y analistas no deberían tener que saber qué datos están en un lugar o quedarse bloqueados con sólo los métodos de acceso que ese repositorio soporta. Se busca un cambio de enfoque usando una única tecnología, como NoSQL, Hadoop, relacional, espacial o gráfica, para aumentar la confianza en la virtualización de datos. Los usuarios y las aplicaciones se conectan a los datos virtualizados, a través de lenguajes SQL, REST y de programación.

Las olas iniciales de  adopción de big data se concentraron en el procesamiento de datos codificados a mano. Las nuevas herramientas de gestión serán desacoplar y aislar las tecnologías de big data a partir de las necesidades de procesamiento de datos de mayor nivel. También veremos la aparición de la programación de flujo de datos que aprovecha el paralelismo extremo, proporciona una simple reutilización de los operadores funcionales y da soporte conectable para funciones de aprendizaje de estadística y de la máquina.

Se consolidaron las tecnologías de Inteligencia Artificial (AI) como Aprendizaje Automático [Machine Learning] (ML), Procesamiento del Lenguaje Natural [Natural Language Processing (PLN)] y Gráficos de Propiedad  [Property Graphs (PG)] a los desafíos de procesamiento de datos comunes. Mientras ML, PLN y PG ya han sido accesibles como bibliotecas API de big data, el nuevo cambio incluirá amplias aplicaciones de estas tecnologías en herramientas de TI que soportan aplicaciones, análisis en tiempo real y datos científicos.

Los servicios de big data en la nube son la magia detrás de los bastidores del Internet de las cosas (IoT). La ampliación de los servicios en la nube no sólo capta los datos de los sensores, sino también los alimenta en análisis de big data y algoritmos para hacer uso de ellos.

Los servicios de alta seguridad en la nube del IoT también ayudarán a los fabricantes a crear nuevos productos que tengan acción de forma segura sobre los datos analizados sin intervención humana.

Saber de dónde provienen los datos – no sólo desde qué sensor o sistema, sino desde qué  nación, hará que sea más fácil para los gobiernos hacer cumplir las políticas nacionales de datos. Las corporaciones multinacionales en movimiento hacia la nube estarán atrapadas entre intereses en conflicto.

Cada vez más, las compañías globales se moverán a las implementaciones de nube híbridas con máquinas en los centros de datos regionales que actúan como un centro local de un servicio en la nube más grande, lo que honra tanto la conducción por la reducción de costos y el cumplimiento normativo.

Los nuevos sistemas de clasificación de seguridad equilibran la seguridad con el acceso. El aumento de la conciencia del consumidor de las formas cómo los datos se pueden recolectar, compartir, almacenar, y robar, amplificará solicitudes de protecciones reglamentarias de información personal.

La amenaza constante de los hackers informáticos cada vez más sofisticados incitará a las empresas tanto a reforzar la seguridad como a auditar el acceso y el uso de los datos.

Deja tu comentario

Tu dirección de correo electrónico no será publicada.

Campos obligatorios(*)

Política de privacidad de www.recluit.mx

Para recibir la información sobre sus Datos Personales, la finalidad y las partes con las que se comparte,
contacten con el Propietario.